Ave Philosophy! Morituri te salutant!

Blog grupe filozofa

Канторов парадокс

tarpe | 10 Februar, 2014 13:43

У овом кратком раду подсетићемо на једног од најважнијих савремених математичара и филозофа, творца теорије скуповаГеорга Кантора (Georg Ferdinand Ludwig Philipp Cantor). Нећемо се бавити целокупним Канторовим стваралаштвом, али ћемо се позабавити једним његовим филозофски релевантним делом, а то је Канторов парадокс.

Кратка биографија: Георг Кантор је живео од 1845. до 1918 године. Рођен је у Санкт Петерсбургу. Математику је студирао у Цириху и Берлину. У Берлину је похађао предавања код најважнијих математичара тог времена – Ернста Кумера, Карла Вајерштраса и Леополда Кронекера (са којим ће касније доћи у лични и професионални сукоб). Још један велики савремени филозоф је студирао математику код двојице, од поменуте тројице математичара (Вајерштраса и Кронекера) – Едмунд Хусерл. Док је Хусерла пут даље водио преко Франца Брентана ка феноменологији, Кантор је цео свој радни век провео истражујући у две математичке области – теорији бројева и теорији скупова, и у обе је оставио запажене резултате. Преломни моменат у његовом животу је било познанство са Рихардом Дедекиндом, који је покушавао да дефинише скуп реалних бројева, и који је Кантора подстакао на истраживања у том пољу. Из тог периода његовог рада најважније достигнуће је доказ непребројивости скупа реалних бојева (R) («дијагонални аргумент»). Теорија скупова и теорија бројева нису одвојене области, него се, напротив, преплићу. Кантор је бројеве истраживао преко скупова бројева – природних, целих, рационалних, реалних, ..., и дошао до важних резултата. Нас занима његов парадокс, и сходно томе, из опште теорије скупова ћемо издвојити само оне појмове који су нам неопходни за разумевање те теме.

Теорија скупова је математичка теорија која се бави скуповима и важи за темељну математичку област (ону на којој се базирају друге области математике; нпр, преко скупова се могу дефинисати релације, функције, итд). Теорија скупова је математичка теорија која се бави скуповима и важи за темељну математичку област (ону на којој се базирају друге области математике; нпр, преко скупова се могу дефинисати релације, функције, итд). Природа скупова је, попут природе бројева или функција, нешто око чега су у математици и филозофији математике мишљења подељена. Неки филозофи сматрају да су скупови посебна врста математичких објеката а други то негирају, тврдећи да скупови нису објекти већ људски конструкти. Дакле, реч је о онтологији математике чији је предмет природа математичких објеката. Онтолошка питања су повезана са епистемолошким и методолошким. На пример, ако сматрамо да скупови постоје независно од наше свести, онда нам се намеће питање како их сазнајемо. Или је случај обрнут, ако заузмемо одређену епистемолошку позицију, отвара се питање онтолошког статуса предмета нашег сазнања. Такође, и тиме ћемо завршити ову кратку напомену из филозофије математике, на овом нивоу разматрања математичких питања није саморазумљиво шта је доказ или шта је математичка операција. Кроз школовање смо усвојили одговарајући математички језик и правила која користимо не доводећи их у питање. Бројили смо и рачунали, али се нисмо питали шта су бројеви. Цртали смо геометријска тела, израчунавали њихове површине и запремине, али смо се ретко питали шта су тачке, праве, равни. А када се упитамо шта је број, шта је тачка, шта је доказ, шта је скуп, онда смо на прагу филозофије математике. На било које од ових питања и покушај његовог одговора надовезује се мноштво филозофских питања и проблема везаних за језик и значење (семантика), природу или начин постојања објеката (онтологија), знање, оправдање и истину (епистемологија), примену математичких знања на стварност, утемељење или заснивање математике, и слично.

Скуп је основни појам идеалне теорије скупова, појам од кога се полази и он се не дефинише (већ се описује или интуитивно разумева). Скуп треба схватити као колекцију (збир) објеката који поседују неку особину.

S = { x : x има особину A} = { x : j(x